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Introduction

Introduction

Y ∼ Pf , {Pf : f ∈ F}

The problem of statistical inference on f, can be divided into three
intimately connected problems.

Estimate the parameter f by an estimator T(Y).
Test hypotheses on f based on test functions Ψ(Y).
Construct confidence sets C(Y) that contain f with high probability.
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1.1 Statistical Sampling Models

1.1 Statistical Sampling Models

X : a random experiment with associated sample space X .
A : a σ − field of subsets of X .
(X ,A) : measurable space
P : probability measure on A.
X1, . . . ,Xn : i.i.d. copies from X
Pn = ⊗n

i=1P : joint distribution of the X1, . . . ,Xn

The goal is to recover P from the n observations.
Classical statistics has been concerned mostly with models where P is
explicitly parameterised by a finite-dimensional parameter.
In this book, we will follow the often more realistic assumption that
no such parametric assumptions are made on P.
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1.1 Statistical Sampling Models

1.1.1 Nonparametric Models for Probability Measures

Total variation metric
||P − Q||TV = sup

A∈A
|P(A)− Q(A)|

Bounded Lipschitz metric
X is endowed with a metric d

β(X ,d)(P,Q) = sup
f∈BL(1)

∣∣∣∣∫
X

f(dP − dQ)

∣∣∣∣ , where

BL(M) =

{
f : X → R, sup

x∈X
|f(x)|+ sup

x ̸=y

|f(x)− f(y)|
|x − y| ≤ M

}
, 0 < M < ∞
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1.1 Statistical Sampling Models

1.1.1 Nonparametric Models for Probability Measures

Supremum-norm metric (Kolmogorov distance)

||FP − FQ||∞ = sup
x∈R

|FP(x)− FQ(x)|

L1-distance

||fP − fQ||1 =

∫
R
|fP(x)− fQ(x)|dx
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1.1 Statistical Sampling Models

1.1.1 Nonparametric Models for Probability Measures

Class of probability densities is more complex than the class of
probability-distribution functions.
we can anticipate that estimating a probability density is harder than
estimating the distribution function.
Instead of P, a particular functional Φ(P) may be the parameter of
statistical interest
Proving closeness of T to P in some strong loss function then gives
access to ’many’ continuous functionals Φ for which Φ(T) will be
close to Φ(P).
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1.1 Statistical Sampling Models

1.1.2 Indirect Observations

Indirect Observations
X1, . . . ,Xn

i.i.d.∼ PX

ϵ1, . . . , ϵn
i.i.d.∼ Pϵ

Yi = Xi + ϵi, i = 1, . . . , n

PY = PX ∗ Pϵ

The observer may have very concrete knowledge of the source of the
error.
It is also known as the deconvolution model because one wishes to
deconvolve Pϵ.
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1.2 Gaussian Models

1.2.1 Basic Ideas of Regression

Regression model

Yi = f(xi) + ϵi, i = 1, . . . , n

Standard Gaussian linear model
f(x) = x1θi + · · ·+ xpθp

Yi = f(xi) + ϵi ≡
p∑

j=1
xijθj + ϵi, i = 1, . . . , n

ϵ1, . . . , ϵn
i.i.d.∼ N(0, σ2)
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1.2 Gaussian Models

1.2.1 Basic Ideas of Regression

If E(ϵi) ̸= 0, this could be accommodated in the functional model by
adding a constant x10 = · · · = xn0 = 1
By the CLT, ϵi =

∑
k ϵik should be approximately normally

distributed, regardless of the actual distribution of the ϵik.
The assumption that the function f is linear is in principle quite
arbitrary.
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1.2 Gaussian Models

1.2.2 Some Nonparametric Gaussian Models

Nonparametric regression model with equally spaced design on [0, 1]

Yi = f(xi) + ϵi, xi =
i
n , ϵi

i.i.d.∼ N(0, σ2), i = 1, . . . , n

The assumption that the xi are equally spaced is important for the
theory that will follow.
It may not be reasonable to assume that f has any specific properties
other than that it is a continuous or a differentiable function.
Even if we would assume that f has infinitely many continuous
derivatives the set of all such f would be infinite dimensional.
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1.2 Gaussian Models

1.2.2 Some Nonparametric Gaussian Models

Gaussian White Noise Model
dY(t) ≡ dY(n)

f (t) = f(t)dt + σ√
ndW(t), t ∈ [0, 1], n ∈ N,

dW is a standard Gaussian white noise process.

g 7→
∫ 1

0
g(t)dY(n)(t) ≡ Y(n)

f (g) ∼ N
(
⟨f, g⟩, ||g||

2
2

n

)

g 7→
∫ 1

0
g(t)dW(t) ≡ W(g) ∼ N

(
0, ||g||22

)
, g ∈ L2([0, 1])

W and Y(n) define Gaussian processes on L2.
For any finite set of orthonormal vectors {ek} ⊂ L2, {W(ek)} is a
multivariate standard normal variable.
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1.2 Gaussian Models

1.2.2 Some Nonparametric Gaussian Models

Gaussian Sequence Space Model

Yk ≡ Y(n)
f,k = ⟨f, ek⟩+

σ√
ngk, k ∈ Z, n ∈ N,

where {ek : k ∈ Z} is orthonormal basis of L2 and gk are i.i.d. of law
W(ek) ∼ N(0, ||ek||22) = N(0, 1)

{ek} realise an isometry between L2 and l2 through the mapping
f 7→ {⟨f, ek⟩}
Gaussian White Noise Model and Gaussian Sequence Space Model are
equivalent to each other.
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

The Le Cam Distance of Statistical Experiments
E(i) = (Yi,P(i)

f ), i = 1, 2
Yi : sample space
P(i)

f : probability measure defined on Yi

T : measurable space of decision rules. T(i)(Y(i)) ∈ T
L : F × T 7→ [0,∞) : loss function measuring the performance
|L| = sup{L(f,T) : f ∈ F ,T ∈ T }
R(i)(f,T(i), L) =

∫
Yi

L(f,T(i)(Y(i)))dP(i)
f
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

The Le Cam Distance of Statistical Experiments(Conti.)

∆F (E(1), E(2)) ≡ max
[
sup
T(2)

inf
T(1)

sup
f,L:|L|=1

|R(1)(f,T(1), L)− R(2)(f,T(2), L)|,

sup
T(1)

inf
T(2)

sup
f,L:|L|=1

|R(1)(f,T(1), L)− R(2)(f,T(2), L)|
]
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments
Proposition 1
If Y(1) = Y(2) = Y and P(1)

f ,P(2)
f ≪ µ,

∆F (E(1), E(2)) ≤ sup
f∈F

∫
Y

∣∣∣∣∣dP(1)
f

dµ −
dP(2)

f
dµ

∣∣∣∣∣ dµ ≡ ||P(1) − P(2)||1,µ,F

pf)
inf
T(1)

sup
f,L:|L|=1

|R(1)(f,T(1), L)− R(2)(f,T(2), L)| ≤

sup
f,L:|L|=1

|R(1)(f,T(2), L)− R(2)(f,T(2), L)|

|R(1)(f,T, L)− R(2)(f,T, L)| ≤
∫
Y
|L(f,T(Y))||dP(1)

f − dP(2)
f | ≤

|L|||P(1) − P(2)||1,µ,F
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proposition 2
If we can find a bi-measurable isomorphism B of Y(1) with Y(2),
independent of f , such that

P(2)
f = P(1)

f ◦ B−1,P(1)
f = P(2)

f ◦ B,

then
∆F (E(1), E(2)) = 0.
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proof of Proposition 2
Let T(2)(Y(2)) ≡ T(1)(B−1(Y(2)))

R(2)(f,T(2), L) =
∫
Y2

L(f,T(1)(B−1(Y(2))))dP(2)
f =

∫
Y1

L(f,T(1)(Y(1)))dP(1)
f

= R(1)(f,T(1), L).
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proposition 3
If there exists a mapping S : Y(1) → Y(2) independent of f such that

Y(2) = S(Y(1)), Y(2) ∼ P(2)
f

and S(Y(1)) is a sufficient statistic for Y(1), then

∆F (E(1), E(2)) = 0.
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

α-Hölderian function

F(α,M) =

{
f : [0, 1] → R, sup

x∈[0,1]
|f(x)|+ sup

x ̸=y

|f(x)− f(y)|
|x − y|α ≤ M

}
0 < α ≤ 1, 0 < M < ∞
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments
Theorem 1.2.1
Let (E(i)

n : n ∈ N), i = 1, 2, 3, equal the sequence of statistical experiments
given by

(i = 1) Yi = f(xi) + ϵi, xi =
i
n , ϵi

i.i.d.∼ N(0, σ2), i = 1, . . . , n

(i = 2) dY(t) ≡ dY(n)
f (t) = f(t)dt + σ√

ndW(t), t ∈ [0, 1], n ∈ N

(i = 3) Yk ≡ Y(n)
f,k = ⟨f, ek⟩+

σ√
ngk, k ∈ Z, n ∈ N

and πn(f) be the function that interpolates f at the xi and that is piecewise
constant on each interval (xi−1, xi] ⊂ [0, 1],
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Theorem 1.2.1 (Conti.)
Then, for F any family of bounded functions on [0, 1],

∆F (E(2)
n , E(3)

n ) = 0,∆F (E(1)
n , E(2)

n ) ≤
√

nσ2

2 sup
f∈F

||f − πn(f)||2.

If F = F(α,M) for any α > 1/2,M > 0, then

∆F (E(1)
n , E(2)

n ) → 0 as n → ∞.

Seonghyeon Kim Mathematical Foundations of Infinite-Dimensional Statistical Models Chap.12018.06.22 25 / 29



1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments
Proof of Theorem 1.2.1
∆F (E(2)

n , E(3)
n ) = 0 follows from Proposition 2.

ϕin := 1(xi−1,xi], Vn := span{ϕin : i = 1, . . . , n}, ⟨f, g⟩n :=
∑

i f(xi)g(xi)
Since ⟨f, ϕin⟩n = f(xi), πn(f)(t) =

∑
f(xi)ϕin(t) is ⟨·, ·⟩n- projection of f

onto Vn.
Yi = f(xi) + ϵi, i = 1, . . . , n is equivalent to

n∑
i=1

Yiϕin(t) =
n∑

i=1
f(xi)ϕin(t) +

n∑
i=1

ϵiϕin(t) = πn(f)(t) +
n∑

i=1
ϵiϕin(t) · · · (1)

Let Πn be L2([0, 1]) projector onto Vn.∫ 1

0
h(t)

n∑
i=1

ϵiϕin(t)dt =
∫ 1

0
Πn(h)(t)

n∑
i=1

ϵiϕin(t)dt ∼ N(0, σ
2

n ||Πn(h)||22)
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proof of Theorem 1.2.1∫ 1

0
h(t)

n∑
i=1

ϵiϕin(t)dt = W(Πn(h))

It equals the L2-projection of dW onto Vn, justifying the notation

σ√
ndWn(t) ≡

n∑
i=1

ϵiϕin(t)dt, dWn = Πn(dW)

(1) can be rewritten as

dỸ = πn(f)(t) +
σ√
ndWn(t) · · · (2)
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proof of Theorem 1.2.1
Next, consider the model

dȲ = πn(f)(t) +
σ√
ndW(t) · · · (3),

then dỸ = Πn(dȲ), and Πn(dȲ) is sufficient for dỸ. So, (2) and (3) are
equivalent by Proposition 3.
In view of Proposition 1 and using Proposition 6.1.7a) combined with
(6.16),

sup
f∈F

||PY
f − PY

πn(f)||
2
1,µ,F ≤ n

σ2 sup
f∈F

||f − πn(f)||22

which gives second claim.
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1.2 Gaussian Models

1.2.3 Equivalence of Statistical Experiments

Proof of Theorem 1.2.1
Finally, uniformly in F = F(α,M),

||f − πn(f)||22 =
n∑

i=1

∫ i/n

(i−1)/n
(f(x)− f(xi))

2dx ≤ M2
n∑

i=1

∫ i/n

(i−1)/n
|x − xi|2α

≤M2n−2α
n∑

i=1

∫ i/n

(i−1)/n
dx = O(n−2α)

so for α > 1/2, the bound of Le Cam distance converges to zero.
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